Roundheaded Appletree Borer
RAB adult emergence begins: May 25; 
Peak emergence: June 10.
RAB egglaying begins: June 5. Peak egglaying 
period roughly: June 26 to July 11.

Codling Moth
1st generation 3% CM egg hatch: June 6 (= tar- 
get date for first spray where multiple sprays 
needed to control 1st generation CM). 
1st generation 20% CM egg hatch: June 14 (= 
target date where one spray needed to control 
1st generation codling moth).

Lesser Appleworm
1st LAW flight, 1st trap catch: May 2.

Mullein Plant Bug
Expected 50% egg hatch date: May 10, which is 
7 days before rough estimate of Red Delicious 
petal fall date. 
The most accurate time for limb tapping counts, 
but possibly after MPB damage has occurred, is 
when 90% of eggs have hatched. 
90% egg hatch date: May 16.

Obliquebanded Leafroller
1st generation OBLR flight, first trap catch ex- 
pected: June 6.
We’re not even finished with April yet, but it looks like we’re already having to confront the impending petal fall segment of the season, at least in some varieties and in some areas of the state. Trees are in a variety of developmental stages right now, more or less centered around the pink-to-bloom state, but the cooler temps we’ve seen over the past few days are due to move upwards again soon, so there’s just a bit of breathing room now for us to consider some of the more significant pest management decisions to keep in mind during this part of the season.

Plum Curculio

Adults move into orchards from overwintering sites in hedgerows or the edges of woods and adults are active when temperatures exceed 60°F, something that will recur this week. Adult females oviposit in fruit during both day and night but feed mostly at night. Depending on temperature, overwintering adults remain active for 2–6 weeks after petal fall. Because adults are not highly mobile, orchards near overwintering sites, woodlands, and hedgerows are most susceptible to attack. Fruit damage is usually most common in border rows next to sites where adults overwinter. Although initial post-bloom sprays for plum curculio control should begin at petal fall, growers are often unsure how many additional sprays will be necessary to protect fruit from PC damage. This model is based on the assumption that residues from sprays applied after petal fall need to be maintained on fruit and foliage only until PC adults stop immigrating into orchards, which corresponds to the time when about 40% of the oviposition cycle is complete. This is predicted by the model to occur at 308 DD (base 50°F) after petal fall of McIntosh. Most probably, this strategy works because, after 40% of PC oviposition is complete, adults usually do not move into the orchard from outside sources, or within orchards from tree to tree. Therefore, by this time, adults residing in treated trees have already been killed by insecticide residues and are unable to complete the remainder of their normal oviposition cycle.

In order to use this strategy: (1) Treat the entire orchard at petal fall with a broad spectrum insecticide. (2) Start calculating the accumulation of DD after petal fall of Macs (base 50°F); this is easily done from the NEWA Apple Insect Models page (http://newa.cornell.edu/index.php?page=apple-insects) by entering the petal fall date for your area.

Following from the fact that PC activity and oviposition are largely determined by temperature, we use an oviposition model to determine when control sprays after petal fall are no longer necessary to protect fruit from PC damage. This model is based on the assumption that residues from sprays applied after petal fall need to be maintained on fruit and foliage only until PC adults stop immigrating into orchards, which corresponds to the time when about 40% of the oviposition cycle is complete. This is predicted by the model to occur at 308 DD (base 50°F) after petal fall of McIntosh. Most probably, this strategy works because, after 40% of PC oviposition is complete, adults usually do not move into the orchard from outside sources, or within orchards from tree to tree. Therefore, by this time, adults residing in treated trees have already been killed by insecticide residues and are unable to complete the remainder of their normal oviposition cycle.

In order to use this strategy: (1) Treat the entire orchard at petal fall with a broad spectrum insecticide. (2) Start calculating the accumulation of DD after petal fall of Macs (base 50°F); this is easily done from the NEWA Apple Insect Models page (http://newa.cornell.edu/index.php?page=apple-insects) by entering the petal fall date for your area.
(3) No additional sprays are necessary whenever the date of accumulation of 308 DD falls within 10–14 days after a previous spray. We’ll attempt to give local updates for the major fruit areas as the post-PF period progresses. In cherries and other stone fruits that are already at shuck fall, sprays should start (or should have started, as appropriate) at the first opportunity. Recall that, in addition to the industry standard broad-spectrum materials, some additional options may be considered: Lorsban 75WG can still be used at petal fall in tart cherries, but is no longer labeled for this use in apples (unless you are using product purchased before this year); also, Calypso, Avaunt and Actara are effective for plum curculio in apples and pears, and Avaunt is also labeled in stone fruit as another PC option. Delegate and Altacor both have some activity on this pest, but should not be considered as the first choices in high-pressure blocks.

Bear in mind that, owing to the warmer temperatures we saw in late April, PC adults (and for that matter, also European apple sawfly, below) are likely to be in most orchards already, waiting for the appearance of suitable fruitlets to attack. This will underscore the importance of timely petal fall applications, which may be more complicated in mixed variety plantings.

**European Apple Sawfly**

This primitive bee and wasp relative shows a preference for early or long-blooming varieties with a heavy set of fruit. This insect is generally a pest mainly in eastern N.Y., although it has been gradually making its presence known in the more western sites, recently progressing as far as Wayne Co. (or beyond). The adult sawfly emerges about the time apple trees come into bloom and lays eggs in the apple blossoms. Young larvae begin feeding just below the skin of the fruits, creating a spiral path usually around the calyx end. This early larval feeding will persist as a scar that is very visible at harvest. Following this feeding, the larva usually begins tunneling toward the seed cavity of the fruit or an adjacent fruit, which usually causes it to abort. As the larva feeds internally, it enlarges its exit hole, which is made highly conspicuous by a mass of wet, reddish-brown frass. The frass may drip onto adjacent fruits and leaves, giving them an unsightly appearance. The secondary feeding activity of a single sawfly larva can injure all the fruit in a cluster, causing stress on that fruit to abort during the traditional “June drop” period.

Certain insecticides that control this pest also adversely affect bees, which can pose a problem at petal fall because certain apple varieties lose their petals before others. In blocks of trees where petal fall has occurred on one variety but not the others, the variety that has lost its petals is likely to sustain some curculio or sawfly injury until the insecticide is applied. Some newer insecticides with activity against both plum curculio and sawfly -- Calypso, Avaunt and Actara -- may have a slight advantage over conventional OPs in this case. Assail represents another option for controlling sawfly; it’s not very active against plum curculio, but will do a good job against rosy apple aphid and spotted tentiform leafminer, as well as sawfly, at this timing. To minimize the hazard to honey bees, apply any pesticide only when no bees are actively foraging on blooming weeds (evening is better than early morning).

**Mites**

If you applied oil or a miticide during the pre-bloom mite control window this season, you’re in good shape. If not, and you are concerned about early buildup in certain problem blocks, Agri-Mek, Apollo, Savey/Onager and Zeal are all appropriate choices to consider at petal fall. Because of the cool temperatures (particularly at night) that can still occur, nymphal populations are likely to be small enough to be effectively handled by any one of these materials, if they fit into your product rotation schedule (i.e., if they weren’t used last year).

continued...
**Obliquebanded Leafroller**

Larvae overwintering as 1st or 2nd stage caterpillars may have had the ability to take advantage of some of our earlier warm weather to feed and grow into a respectable size, although I have to say that we haven’t actually seen many up to this point, so most are likely still relatively small. It would be prudent to have a quick look for late-stage larvae in problem blocks to determine whether a treatment against the overwintered brood should be included in your petal fall plans. Scout the blossom clusters or foliar terminals for larvae feeding within both the flowers and rolled leaves; a 3% infestation rate could justify an application to minimize overwintered fruit damage and help reduce summer populations.

Among the selective insecticides available, Intrepid has been successful at this timing, and B.t. products, which can be used while blossoms are still present, include Dipel, Deliver, Agree, Bio-bit and Javelin. More recently, Proclaim has been shown to be very effective at the petal fall timing, and also provides activity against early season mite populations. Delegate and Altacor, both relatively new on the scene, both offer very good efficacy against not only OBLR, but also the internal leps (below). Pyrethroids such as Asana, Baythroid, Danitol, Warrior, Proaxis or Leverage may also be effective, depending on past use history, but be aware of their broad-spectrum effects, which can work both for and against you, according to how many beneficial mites and insects you can afford to lose.

**Oriental Fruit Moth**

Biofix has been variably spread out across NY, as usual, spanning the period from early April in the Hudson Valley to last week in western NY, and trap numbers are still idling until the temperatures warm again. Current degree day (base 45°F) readings are somewhere in the low 20s-30s towards the recommended totals of 170 (in peaches) and 350 (in apples) as the timing at which to start a protective spray program. To maximize the efficacy of 1st brood control, peach growers in western N.Y. should use one of the suggested OP or pyrethroid options from the Recommends starting at petal fall, backed up 10–14 days later. In apples, in addition to the newly available Delegate and Altacor, a number of the petal fall selection of insecticides will do an acceptable job of controlling this generation, including the OPs, pyrethroids, Intrepid, Assail, Avaunt, and Calypso.

**White Apple Leafhopper**

We haven’t spotted any yet, but WALH nymphs can be numerous in some blocks at petal fall, especially in the eastern part of the state. Nymphal populations of 1 or more per leaf can result in stippling damage to the leaves. Provado, Actara, Avaunt, Assail and Calypso have proven to be effective against this pest, and a petal fall application of any of these materials also gives leafminer control. Rosy apple aphids can similarly be cleaned up with this strategy (for most of the above; not so well with Avaunt), although petal fall is often too late to prevent fruit damage that their feeding may have caused. Growers using Sevin in their thinning sprays will get some WALH control at the 1 lb rate. Alternative choices include Thionex, Lannate, and the pyrethroids; Agri-Mek or Carzol used for mites now will also do the job, although Carzol will be harmful to predator mites.
ANOTHER COUNTY
HEARD FROM
(Art Agnello,
Entomology, Geneva)

✦✦ Starting today, we will be presenting the trap data from a number of our field research plots set up in different NY production regions, as a means of keeping tabs on insect activity around the state.

April 22-23, Avg No./trap

<table>
<thead>
<tr>
<th>Location/County</th>
<th>STLM</th>
<th>OFM</th>
<th>LAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyndonville/Orleans</td>
<td>16.3</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Waterport/Orleans</td>
<td>33.3</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Hilton/Monroe</td>
<td>1485</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lincoln/Wayne</td>
<td>13.3</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Sodus-Lakesite/Wayne</td>
<td>13.0</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Sodus-Inland/Wayne</td>
<td>5.3</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Alton/Wayne</td>
<td>45.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Wolcott/Wayne</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lafayette/Onondaga</td>
<td>38.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

PHENOLOGIES

Geneva:
- Apple (McIntosh): 50% king bloom
- Apple (Red Delicious): 10% king bloom
- Apple (Empire): bloom
- Pear: bloom
- Sweet cherry: 10% petal fall
- Tart cherry: bloom
- Plum: 10% petal fall
- Peach: 10% petal fall

Highland:
- Apple (Ginger Gold): petal fall–fruit set
- Apple (McIntosh): petal fall
- Apple (Red Delicious, Golden Delicious): early petal fall
- Pear (Bartlett/Bosc): fruit set
- Peach (early): shucks 10% off
- Peach (late): shucks on
- Plum (Italian/Stanley): shucks on
- Apricot: shucks off
- Sweet cherry (Attica): fruit set
NOTE: Every effort has been made to provide correct, complete and up-to-date pesticide recommendations. Nevertheless, changes in pesticide regulations occur constantly, and human errors are possible. These recommendations are not a substitute for pesticide labelling. Please read the label before applying any pesticide.

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.