COMING EVENTS

Current DD accumulations
(Geneva 1/1-5/2): 262 122
(Geneva 1/1-5/2/2010): 402 212
(Geneva "Normal"): 277 133
(Geneva 1/1-5/9 Predicted): 319 146
(Highland 1/1-5/2): 324 157

Coming Events – Ranges (Normal +/- Std Dev):

Comstock mealybug
 1st gen. crawlers in pear 215-441 80-254

European red mite egg hatch 231-337 100-168

Green fruitworm flight subsides 247-451 111-239

Lesser appleworm 1st catch 263-567 120-306

OBLR larvae active 158-314 64-160

Oriental fruit moth 1st catch 222-324 94-164

Pear psylla 1st egg hatch 174-328 60-166

Redbanded leafroller 1st flight peak 231-365 105-187

Rose leafhopper 1st nymph on rose 239-397 96-198

STLM 1st oviposition 143-273 58-130
STLM 1st flight peak 264-394 121-203
McIntosh at pink 275-311 124-158

Phenologies 5/2 5/9 (Predicted)

Geneva:
Apple (McIntosh): tight cluster pink–bloom
Apple (Empire): tight cluster king bloom
Apple (Red Delicious): tight cluster pink
Pear (Bartlett): green cluster bloom
Sweet cherry (Hedelfingen): first bloom bloom–petal fall
Tart cherry (Montmorency): white bud bloom
Peach (Red Haven): pink bloom
Apricot (Harrowblush) bloom petal fall

Highland:
Apple (Ginger Gold): full bloom
Apple (McIntosh): early bloom
Apple (Red/Golden Delicious): late pink
Pear (Bartlett/Bosc): full bloom
Peach (early – Red Haven): bloom
Peach (late): bloom
Plum (Italian/Stanley): bloom
Cherry (Sweetheart, Early): full bloom
Apricot (Early): later petal fall/fruit set
TRAP CATCHES (Number/trap/day)

Geneva

<table>
<thead>
<tr>
<th></th>
<th>4/21</th>
<th>4/25</th>
<th>4/28</th>
<th>5/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Fruitworm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>0.0</td>
<td>1.0*</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4*</td>
</tr>
</tbody>
</table>

Highland (Peter Jentsch)

<table>
<thead>
<tr>
<th></th>
<th>4/18</th>
<th>4/25</th>
<th>5/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Fruitworm</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>3.9</td>
<td>4.7</td>
<td>10.6</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>0.4</td>
<td>10.8</td>
<td>37.5</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>0.0</td>
<td>0.0</td>
<td>5.6*</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* = 1st catch

PEST FOCUS

Geneva:
1st Spotted Tentiform Leafminer trap catch today, 5/2.

Highland:
Oriental Fruit Moth 1st catch today, 5/2.
Increased Pear Psylla ovipoistion and nymph emergence observed last week.
Low numbers of Brown Marmorated Stink Bug observed in pear.

[Section: INSECTS]
Apple growers in the Eastern US have faced challenges in managing the complex of insects and diseases of apples using conventional pesticides during the last decade because of increasing pesticide regulatory restrictions, public concerns about food safety and environmental quality, and the development of resistance to older materials by key insect and disease pests. Growers are attempting to turn to newer reduced-risk pesticides, but these are more expensive and require more precise use patterns because of their different modes of action. In addition, many current IPM protocols were designed for older conventional materials. During the last several years, an interdisciplinary group of researchers at Cornell University has developed a web-based, "Real-Time" Apple IPM Decision Support System that can deliver relevant, current information on weather data and pest populations to facilitate grower pest management decisions throughout the growing season. This system tracks seasonal development of key insect pests and
diseases using Degree Day and Infection Risk Risk models. The models indicate pest status, pest management advice and sampling options, and are linked to an interactive system that helps growers choose appropriate materials when pesticide use is recommended.

Insect pest developmental stages are calculated from Degree Day (DD) accumulations at IPM's NEWA and National Weather Service airport weather stations throughout the state, as well as a large number of sites in MA and VT, plus several in CT, RI, NJ, and PA. The insect pests addressed by this website are: apple maggot, oriental fruit moth, codling moth, plum curculio, obliquebanded leafroller, and spotted tentiform leafminer. Disease predictions are available for apple scab and fire blight, and a summer disease (sooty blotch and flyspeck) development model is due to be made available this summer.

Access to the Apple Insects models is through the "Pest Forecasts" list or the "Apples" link on the NEWA homepage (http://newa.cornell.edu). From the Apples homepage, clicking on the link that says "Apple Insect Phenology Models and IPM Forecasts" brings up a state
map showing the available weather stations, plus pull-down menus on one side (Fig. 1).

After the user selects a weather station, pest of interest, and the desired end date for weather data accumulation, pest DD models and historical records are used to calculate: Tree Phenological Stage, Pest Stage(s), Pest Status, and Pest Management Information, all of which appears on a "Results" page (Fig. 2).
The phenological stage can be adjusted according to field observations by selecting from a pull-down menu; this will generally change some of text provided in the advice boxes. Hyperlinks on this page can take the user to various other online resources, such as color photos of the bud development stages, NYS IPM Fact Sheets of the pests in question, and when appropriate, sampling charts for use in conducting field samples of specific pest life stages (e.g., eggs, larvae, mines). When a pesticide spray is recommended, a "Pesticide Information" link in the "Pest Management" box takes the user to the Pest Management Education Program's
A pesticide search returns a series of profiles of all the NY-registered products fitting the specified pest species and efficacy rating (Fig. 4). The profile gives the common and trade names, labeled use rate, re-entry and pre-harvest intervals, and EPA registration number of each product. Also included are some general remarks on the range of product efficacy, and any known effects on beneficial species. A "Details" link in each profile takes the user to a more extensive list of information, including notes on the active ingredient (including its mode of action classification), an overview of recommended use periods, and a link to a scanned
copy of the NYS DEC-approved product label, which can be read or printed out.

All of the information presented is already available online at various other university sites, but this website brings these resources together in one place that is more convenient and efficient to access. Predictions provided by the website can be refined and adjusted to reflect current insect activity by user-entered events.
obtained through field monitoring (such as pest biofix; i.e., the first sustained flight of a pest species). The pesticide selection filter uses Cornell University product efficacy ratings and the type of management program selected by the user (i.e., conventional, reduced-risk, non-organophosphate, organic).

The website uses DD information based on either historical records or user-entered biofix data, and includes: the start, peak, or progress of the oviposition or egg hatch period (for CM, OBLR, OFM, and STLM); the start, peak or end of the pest's 1st, 2nd, etc., flight (for AM, CM, OBLR, OFM, and STLM); the first occurrence of adult or larval feeding, foliar or fruit damage, or mines (for OBLR and STLM).

We are continuing our efforts to refine and improve the accuracy of the website's pest predictions, and expand the range of sites from which weather data is able to be collected. During this process, we encourage everyone in the apple industry to check this website for themselves throughout the growing season, to see how well it forecasts pest events in specific areas of the state. We appreciate hearing of any anomalies or irregular predictions generated by using the local data to chart pest or disease development in your growing
area, and hope to end up with a pest management tool that is useful and accurate for advising apple growers about what's going on in their orchards in Real-Time.

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 3 p.m. Monday to:

Scaffolds Fruit Journal
Editors: A. Agnello, D. Kain
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at:

http://www.scaffolds.entomology.cornell.edu/index.html