SCAFFOLDS Fruit Journal, Geneva, NY
Volume 21, No. 9
Update on Pest Management and Crop Development
May 7, 2012

COMING EVENTS

43°F 50°F

Current DD accumulations
(Geneva 1/1-5/7): 491 261
(Geneva 1/1-5/7/2011): 294 136
(Geneva "Normal"): 345 173
(Geneva 1/1-5/14 predicted): 598 324
(Highland 1/1-5/7/12): 637 328
(Highland 1/1-5/7/11): 390 192

Upcoming Pest Events – Ranges (Normal +/- Std Dev):
European red mite
 1st summer eggs447-555 237-309
Lesser appleworm
 1st flight peak355-773 174-440
Lesser peachtree borer
 1st catch482-684 251-379
Mullein bug 90% hatch472-610 247-323
Oriental fruit moth
 1st flight peak352-550 178-294
Pear psylla hardshells present493-643 271-361
Plum curculio
 oviposition scars present485-589 256-310
San Jose scale 1st flight peak554-746 294-418
Spotted tentiform leafminer
 sapfeeders present343-601 165-317
McIntosh fruit set510-600 266-326

Phenologies
(Geneva):
Apple (McIntosh): petal fall
Apple (Red Delicious): 95% petal fall
Apple (Empire): petal fall
Peach: fruit set, shuck split
Sweet cherry: fruit set
Plum: fruit set, shucks on
(Highland):
Apple (Golden Delicious, Red Delicious, McIntosh, Empire): fruit >8 mm
PEST FOCUS

Geneva: 1st Codling Moth and San Jose Scale trap catches 5/4.
 1st American Plum Borer trap catch today, 5/7.

Highland: 1st Lesser Appleleworm trap catch 4/29.
 1st Codling Moth trap catch today, 5/7.

TRAP CATCHES (Number/trap/day)

Geneva

<table>
<thead>
<tr>
<th></th>
<th>4/30</th>
<th>5/4</th>
<th>5/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbanded Leafroller</td>
<td>3.0</td>
<td>15.5</td>
<td>9.3</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>2.5</td>
<td>8.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>0.3</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>American Plum Borer</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3*</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>San Jose Scale</td>
<td>0.0</td>
<td>1.3*</td>
<td>0.3</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>0.0</td>
<td>0.3*</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Highland (Peter Jentsch)

<table>
<thead>
<tr>
<th></th>
<th>4/30</th>
<th>5/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbanded Leafroller</td>
<td>4.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>25.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>10.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>0.0</td>
<td>1.4*</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>0.0</td>
<td>1.0*</td>
</tr>
</tbody>
</table>
Tufted Apple Budmoth 0.0 0.1
Fruittree Leafroller 0.0 0.0
* = 1st catch

ORCHARD RADAR DIGEST
[Box Text: FIRST FLIGHT]
Beginning with today's issue, we will once again be publishing pest predictions generated by the Univ. of Maine's Orchard Radar model estimation service, provided to us by Glen Koehler. This pest management tool uses commercially available weather data as an input for apple pest occurrence and development models taken from many established university and practitioner sources. It's offered as another perspective on what's happening in the orchard to compare against our own record-generated advisories and, of course, personal observations from the field. We'll be printing only some of the short-term arthropod events; the full Orchard Radar product range covers disease and horticultural events as well. The public New England sites available for anyone to use are located at: http://pronewengland.org/AllModels/DecisionModels.htm. Growers interested in exploring this service for their specific site may wish to contact Glen personally (glen.koehler@maine.edu).

Geneva Predictions:

Roundheaded Appletree Borer

RAB egglaying begins: June 2. Peak egglaying period roughly: June 24 to July 9.

Dogwood Borer
First DWB egg hatch roughly: June 20.

Codling Moth
1st generation, first sustained trap catch biofix date: May 7. Codling moth development as of May 7: 1st generation adult emergence at 1% and 1st generation egg hatch at 0%.

Lesser Appleworm
Peak LAW trap catch: May 12.

Mullein Plant Bug
Expected 50% egg hatch date: May 4, which is 7 days before rough estimate of Red Delicious petal fall date. The most accurate time for limb tapping counts, but possibly after MPB damage has occurred, is when 90% of eggs have hatched.
90% egg hatch date: May 10.

Obliquebanded Leafroller
1st generation OBLR flight, first trap catch expected: June 3.

Oriental Fruit Moth
1st generation 55% egg hatch and first treatment date, if needed: May 21.

San Jose Scale
First adult SJS caught on trap: May 10.

Spotted Tentiform Leafminer
1st generation sapfeeding mines start showing: May 11. Optimum sample date is around May 12, when a
larger portion of the mines have become detectable.

White Apple Leafhopper
1st generation WALH found on apple foliage: May 3.

[Section: INSECTS]

REMAINS OF THE DAY
(Art Agnello, Entomology, Geneva; ama4@cornell.edu)

[Box Text: DIRECT APPROACH]

We still haven't progressed far enough to know just how much viable fruit there is on the trees this season, but some early indications suggest that, at least in some locations, there may be more than first predicted. Most sites in western NY have yet to actually complete petal fall, and even in the Hudson Valley, the picture is far from clear. As advised last week, the decision of what to do about protecting the remaining fruits will need to be based on careful inspection after (probably) still more waiting. Proceeding on the assumption that the insects of most concern in planning any petal fall sprays will be those directly attacking the fruits, here's a brief review of the guidelines for addressing the other pests normally included in this category besides plum curculio (covered last week):
European Apple Sawfly

This primitive bee and wasp relative shows a preference for early or long-blooming varieties with a heavy set of fruit. This insect is generally a pest mainly in eastern N.Y., although it has been gradually making its presence known in the more western sites, recently progressing as far as Wayne Co. (or beyond). The adult sawfly emerges about the time apple trees come into bloom and lays eggs in the apple blossoms. Young larvae begin feeding just below the skin of the fruits, creating a spiral path usually around the calyx end. This early larval feeding will persist as a scar that is very visible at harvest. Following this feeding, the larva usually begins tunneling toward the seed cavity of the fruit or an adjacent fruit, which usually causes it to abort. As the larva feeds internally, it enlarges its exit hole, which is made highly conspicuous by a mass of wet, reddish-brown frass. The frass may drip onto adjacent fruits and leaves, giving them an unsightly appearance. The secondary feeding activity of a single sawfly larva can injure all the fruit in a cluster, causing stress on that fruit to abort during the traditional "June drop" period.

Certain insecticides that control this pest also adversely affect bees, which can pose a problem at
petal fall because certain apple varieties lose their petals before others. In blocks of trees where petal fall has occurred on one variety but not the others, the variety that has lost its petals is likely to sustain some curculio or sawfly injury until an insecticide is applied. Some newer insecticides with activity against both plum curculio and sawfly -- Calypso, Avaunt and Actara -- may have a slight advantage over conventional OPs in this case. Assail represents another option for controlling sawfly; it's not very active against plum curculio, but will do a good job against rosy apple aphid and spotted tentiform leafminer, as well as sawfly, at this timing. To minimize the hazard to honey bees, apply any pesticide only when no bees are actively foraging on blooming weeds (evening is better than early morning).

Obliquebanded Leafroller

Larvae overwintering as 1st or 2nd stage caterpillars may have had the ability to grow to a noticeable size, although we haven't actually seen any up to this point, so most are likely still relatively small. While you're assessing bud viability, it would be prudent to have a quick look for later-stage larvae in problem blocks to determine whether a treatment against the overwintered brood should be included in your petal fall plans. Scout the blossom clusters or foliar terminals
for larvae feeding within both the flowers and rolled leaves; a 3% infestation rate could justify an application
to minimize overwintered fruit damage and help reduce summer populations.

Among the selective insecticides available, Intrepid
has been successful at this timing, and B.t. products,
which can be used while blossoms are still present,
include Dipel, Deliver, Agree, Biobit and Javelin. More
recently, Proclaim has been shown to be very effective
at the petal fall timing, and also provides activity
against early season mite populations. Delegate,
Altacor, and Belt all offer very good efficacy against not
only OBLR, but also the internal leps. Pyrethroids such
as Asana, Baythroid, Danitol, Warrior, Proaxis or
Leverage may also be effective, depending on past use
history, but be aware of their broad-spectrum effects,
which can work both for and against you, according to
your approach to conserving beneficial mites and
insects.

Oriental Fruit Moth
Biofix will be very spread out across NY again this
year, with most WNY sites yet to record any moth
captures; moderate temperatures forecast for this
week will likely continue the indistinct pattern of
emergence in most sites. Use the NEWA Apple Insect Models page to chart current degree day (base 45°F) progress towards the recommended totals of 170 (in peaches) and 350 (in apples) as the timing at which to apply a protective spray. To maximize the efficacy of 1st brood control, peach growers should use one of the suggested options from the Recommends starting at petal fall, backed up 10–14 days later. In apples, in addition to Delegate, Altacor, and Belt, a number of the petal fall selection of insecticides will do an acceptable job of controlling this generation, including the OPs, pyrethroids, Intrepid, Assail, Avaunt, and Calypso.

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 3 p.m. Monday to:
Scaffolds Fruit Journal
Editors: A. Agnello, D. Kain
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>