SCAFFOLDS Fruit Journal, Geneva, NY
Volume 23, No. 11
Update on Pest Management and Crop Development
June 2, 2014

COMING EVENTS

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Range 43°F</th>
<th>Range 50°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current DD accumulations</td>
<td>687</td>
<td>398</td>
</tr>
<tr>
<td>(Geneva 1/1-6/2):</td>
<td>748</td>
<td>460</td>
</tr>
<tr>
<td>(Geneva 1/1-6/2/2013):</td>
<td>771</td>
<td>406</td>
</tr>
<tr>
<td>(Geneva "Normal"):</td>
<td>866</td>
<td>528</td>
</tr>
<tr>
<td>(Geneva 1/1-6/9/14, predicted):</td>
<td>868</td>
<td>500</td>
</tr>
<tr>
<td>(Highland 1/1-6/2/14):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upcoming Pest Events – Ranges (Normal +/- Std Dev):

American plum borer
- 1st flight peak 590-970 321-589
Black cherry fruit fly 1st catch 702-934 380-576
Codling moth 1st flight peak 561-991 306-586

European red mite
- summer eggs hatch 737-923 424-572

Lesser appleworm 1st flight peak 349-761 170-432

Obliquebanded leafroller
- pupae present 601-821 328-482

Obliquebanded leafroller
- 1st trap catch 812-986 472-594
Pandemis leafroller 1st catch 773-901 443-525
Redbanded leafroller
 1st flight subsides 592-898 332-560
Rose leafhopper
 adults on multiflora rose 689-893 366-498
Rose leafhopper adults on apple 809-1053 440-622
San Jose scale 1st flight peak 554-742 294-416
Spotted tentiform leafminer
 1st flight subsides 668-950 369-577

Pest Focus
 Plum Curculio oviposition scars 1st noted.
 Green Fruitworm flight has subsided.

TRAP CATCHES (Number/trap/day)
Geneva

<table>
<thead>
<tr>
<th></th>
<th>5/22</th>
<th>5/27</th>
<th>5/29</th>
<th>6/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green fruitworm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>9.2</td>
<td>4.7</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>35.8</td>
<td>7.4</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>10.8</td>
<td>6.0</td>
<td>3.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>0.7*</td>
<td>2.3</td>
<td>1.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Lesser appleworm</td>
<td>0.0</td>
<td>0.1*</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>San Jose scale</td>
<td>0.0</td>
<td>1.1*</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>American plum borer</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3*</td>
<td>0.7</td>
</tr>
<tr>
<td>Insect</td>
<td>5/12</td>
<td>5/19</td>
<td>5/27</td>
<td>6/2</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Lesser peachtree borer</td>
<td>0.0</td>
<td>0.9*</td>
<td>2.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Highland (Peter Jentsch)</td>
<td>5/12</td>
<td>5/19</td>
<td>5/27</td>
<td>6/2</td>
</tr>
<tr>
<td>Green fruitworm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>15.8</td>
<td>5.6</td>
<td>2.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>30.0</td>
<td>10.2</td>
<td>5.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>12.6</td>
<td>3.9</td>
<td>7.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>1.0*</td>
<td>0.8</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Brown Marmorated Stink Bug</td>
<td>1.0*</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Variegated Leafroller</td>
<td>0.0</td>
<td>0.2*</td>
<td>0.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Tufted Apple Bud Moth</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>-</td>
<td>1.0*</td>
<td>1.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* = 1st catch

ORCHARD RADAR DIGEST

[Box Text: FLIGHT PATH]
[H = Highland; G = Geneva]:

Roundheaded Appletree Borer
 RAB egglaying begins: June 5 (H)/June 8 (G). Peak egglaying period roughly: June 23 to July 7 (H)/June 27 to July 11 (G).

Dogwood Borer
 First DWB egg hatch roughly: June 23 (H)/June 27 (G).

Codling Moth
 Codling moth development as of June 2: 1st generation adult emergence at 35% (H)/24% (G) and 1st generation egg hatch at 0%.
 1st generation 3% CM egg hatch: June 6 (H)/June 9 (G) = target date for first spray where multiple sprays needed to control 1st generation CM.
 1st generation 20% CM egg hatch: June 12 (H)/June 16 (G) = target date where one spray needed to control 1st generation CM.

Lesser Appleworm
 2nd generation LAW flight begins around: July 8 (H)/July 13 (G).

Obliquebanded Leafroller
 1st generation OBLR flight, first trap catch expected: June 7 (H)/June 10 (G).
 Where waiting to sample late instar OBLR larvae is not an option (= where OBLR is known to be a
problem, and will be managed with insecticide against young larvae): early egg hatch and optimum date for initial application of an insecticide effective against OBLR (with follow-up applications as needed): June 22 (H)/June 26 (G).

San Jose Scale
1st generation SJS crawlers appear: June 16 (H)/June 20 (G).

Spotted Tentiform Leafminer
2nd STLM flight begins around: June 14 (H)/June 18 (G).

[Section: INSECTS]

I CAN SEE CLEARWING NOW
(Art Agnello, Entomology, Geneva; ama4@cornell.edu)
[Box text: FIT TO BE TIED]

In NY, there are two species of sesiid (clearwing) moths that attack peaches — the peachtree borer (PTB), Synanthedon exitiosa, and the lesser peachtree borer (LPTB), S. pictipes. The adult borers are striking clear-winged moths with yellow and steel-blue body markings. The adults of these insects have from one to four yellow-orange stripes across the abdomen, depending upon species and sex. The PTB enters the
tree near soil level and does not require the presence of wounds or breaks in the bark for entry, but the LPTB nearly always enters the tree at a pruning scar, canker, mechanical injury, or winter-injured area. The LPTB additionally attacks cherries, causing the same type of injury in the upper trunk and scaffold branches of these trees. Both species pass the winter as borers inside the tree, and in the spring emerge as moths that lay eggs on or in the trunk during the summer. The LPTB moth emerges first, normally in late May, (we caught our first of this season in Geneva on May 27), and the PTB doesn't show up normally until mid-June; both stay active (laying eggs) through August. When the borer stages hatch, the PTB tends to crawl down the tree to soil level and burrow in there, but the LPTB will move to the nearest injured area, which may be on the lower trunk or just as easily up in the scaffold limbs. LPTB completes its development in one year, but some PTB larvae take two years to develop, so any control measure a grower would elect will require repeating for at least 2–3 years.

Injury is caused by larval feeding on the cambium and inner bark of the trunk close to the soil level (PTB) or on the upper trunk and lower scaffold branches (LPTB). Occasionally, larger roots are also attacked by PTB.
Areas attacked often have masses of gum, mixed with frass, exuding from the bark. All ages of trees are injured. Young trees are at times completely girdled and subsequently die. Older trees are often so severely injured that their vitality is lowered and they are rendered especially susceptible to attack by other insects or by diseases. Although both species may be found in infested trees, younger plantings and those not afflicted by extensive cankers or other bark splits are attacked primarily by PTB.

Chemical control is difficult, owing to the concealed habit of the larvae. Preplant dipping of roots and crowns of peach tree seedlings before planting using Lorsban has given complete control of the peachtree borer for the 1st growing season and has reduced borers during the 2nd season. For in-season control, growers have traditionally relied on one or more coarse insecticide sprays (e.g., Asana, Lorsban, Proaxis, Warrior) of the trunks and lower scaffold branches to deter egg laying and kill newly established larvae. Because this is a labor-intensive measure that often fails to completely control these pests, many growers choose not to elect treatment, or else do an incomplete job, with the intention of getting what they can out of a planting until infestations combine with other peach
production factors to warrant tree removal. However, there is a good alternative in the form of pheromone mating disruption (MD) tools for the control of these perennial pests.

Isomate-PTB Dual (Pacific Biocontrol/CBC America, EPA Reg. No: 53575-34) is the twist-tie pheromone dispenser labeled for use against both of these species in all NYS stone fruits. They are placed in the trees at a rate of 150–250 ties/A at or before the first flight, with the higher rate (250/A) recommended when pest pressure is high. This product has replaced the Isomate-LPTB and Isomate-PTB formulations. We have conducted trials on the efficacy of Isomate-LPTB with and without the addition of directed trunk sprays in peaches, and after 2 years we saw that the pheromone dispensers completely suppressed trap catches of both PTB and LPTB for both seasons, compared with relatively heavy flights noted in the non-disrupted comparison blocks, showing that pheromone treatment was highly successful in disrupting the chemical communication of males and females of these two species.

These trials provided sufficient evidence that mating disruption alone is able to provide adequate protection
from borer infestations in commercial orchards, giving growers an effective non-chemical alternative to trunk sprays for managing this pest complex in their stone fruit plantings. Growers interested in this approach should be placing the pheromone ties during these next 1–2 weeks, before the LPTB flight gets solidly underway statewide.

STINK BUG SURVEY CLOSING SOON

Got stink bugs? We need your help! We're surveying growers to assess the impact of BMSB on crops and gather information that will help us defeat this pest. Receive a free *Guide to Stink Bugs* if you **complete the 10-minute BMSB survey** (https://cornell.qualtrics.com/SE/?SID=SV_5ssnjXLNhvp6v1H). Your participation will **help us to help you Stop BMSB!** The survey will be available until June 30th.

—The Outreach Team for "StopBMSB," a project focused on the biology, ecology, and management of the brown marmorated stink bug.
For more info: StopBMSB.org
[* see it at https://pubs.ext.vt.edu/444/444-356/444-356_pdf.pdf]
This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 2 p.m. Monday to:

Scaffolds Fruit Journal
Editors: A. Agnello, D. Kain
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>