COMING EVENTS

<table>
<thead>
<tr>
<th>Event</th>
<th>43°F</th>
<th>50°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current DD accumulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Geneva 1/1-6/9):</td>
<td>846</td>
<td>507</td>
</tr>
<tr>
<td>(Geneva 1/1-6/9/2013):</td>
<td>860</td>
<td>523</td>
</tr>
<tr>
<td>(Geneva "Normal"):</td>
<td>914</td>
<td>504</td>
</tr>
<tr>
<td>(Geneva 1/1-6/16/14, predicted):</td>
<td>1037</td>
<td>650</td>
</tr>
<tr>
<td>(Highland 1/1-6/9/14):</td>
<td>1044</td>
<td>627</td>
</tr>
</tbody>
</table>

Upcoming Pest Events – Ranges (Normal +/- Std Dev):

American plum borer
 1st flight peak............................. 590-970 321-589
Black cherry fruit fly 1st catch........ 702-934 380-576
Cherry fruit fly 1st catch 755-1289 424-806
Codling moth 1st flight peak............. 561-991 306-586
Dogwood borer 1st catch 819-1299 473-793
European red mite
 summer eggs hatch......................... 737-923 424-572
Lesser appleworm 1st flight peak .. 349-761 170-432
Obliquebanded leafroller
 1st trap catch 812-986 472-594
Obliquebanded leafroller
 1st flight peak.......................... 830-1204 483-753

Oriental fruit moth
 1st flight subsides...................... 835-1117 489-693

Pandemis leafroller 1st catch........... 773-901 443-525
Pandemis leafroller flight peak 874-1170 503-717
Peachtree borer 1st catch............... 797-1341 459-829

Redbanded leafroller
 1st flight subsides...................... 592-898 332-560

Rose leafhopper
 adults on multiflora rose.............. 689-893 366-498
Rose leafhopper adults on apple ... 809-1053 440-622
San Jose scale 1st flight subsides ... 8556-1227 508-760

Spotted tentiform leafminer
 2nd flight begins........................ 992-1166 590-728

Pest Focus
 Obliquebanded Leafroller and Dogwood
 Borer 1st catch today, 6/9.
Highland: Obliquebanded Leafroller and Sparganothis
 Fruitworm 1st catch today, 6/9.

TRAP CATCHES (Number/trap/day)
Geneva

 5/29 6/2 6/5 6/9
<table>
<thead>
<tr>
<th>Insect/Moth Family</th>
<th>5/19</th>
<th>5/27</th>
<th>6/2</th>
<th>6/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbanded Leafroller</td>
<td>1.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>4.7</td>
<td>1.3</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>3.8</td>
<td>4.3</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>1.7</td>
<td>2.5</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.9</td>
</tr>
<tr>
<td>San Jose Scale</td>
<td>1.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>American Plum Borer</td>
<td>0.3*</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lesser Peachtree Borer</td>
<td>2.2</td>
<td>0.7</td>
<td>3.0</td>
<td>1.6</td>
</tr>
<tr>
<td>Pandemis Leafroller</td>
<td>-</td>
<td>0.0</td>
<td>1.0*</td>
<td>1.9</td>
</tr>
<tr>
<td>Obliquebanded Leafroller</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.1*</td>
</tr>
<tr>
<td>Highland (Peter Jentsch)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>5.6</td>
<td>2.9</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Spotted Tentiform Leafminer</td>
<td>10.2</td>
<td>5.6</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>3.9</td>
<td>7.8</td>
<td>4.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>0.8</td>
<td>1.6</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Brown Marmorated Stink Bug</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Variegated Leafroller</td>
<td>0.2*</td>
<td>0.2</td>
<td>1.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Tufted Apple Bud Moth</td>
<td>0.0</td>
<td>0.1</td>
<td>1.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>1.0*</td>
<td>1.0</td>
<td>2.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Sparganothis Fruitworm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1*</td>
</tr>
<tr>
<td>Obliquebanded Leafroller</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.1*</td>
</tr>
</tbody>
</table>

* = 1st catch
ORCHARD RADAR DIGEST

[Box Text: JUNE BUGS]
[H = Highland; G = Geneva]:

Roundheaded Appletree Borer
 RAB egglaying begins: June 5 (H)/June 8 (G). Peak egglaying period roughly: June 22 to July 7 (H)/June 27 to July 12 (G).

Dogwood Borer
 First DWB egg hatch roughly: June 22 (H)/June 26 (G).

Codling Moth
 Codling moth development as of June 9: 1st generation adult emergence at 63% (H)/50% (G) and 1st generation egg hatch at 9% (H)/2% (G).
 1st generation 3% CM egg hatch: June 6 (H)/June 10 (G) = target date for first spray where multiple sprays needed to control 1st generation CM.
 1st generation 20% CM egg hatch: June 12 (H)/June 115 (G) = target date where one spray needed to control 1st generation CM.

Lesser Appleworm
 2nd generation LAW flight begins around: July 7 (H)/July 12 (G).

Obliquebanded Leafroller
 1st generation OBLR flight, first trap catch expected: June 7 (H)/June 11 (G).
 Where waiting to sample late instar OBLR larvae is not an option (= where OBLR is known to be a problem,
and will be managed with insecticide against young larvae): early egg hatch and optimum date for initial application of an insecticide effective against OBLR (with follow-up applications as needed): June 21 (H)/June 26 (G).

Oriental Fruit Moth
2nd generation OFM flight begins around: June 26 (H)/June 30 (G).

Redbanded Leafroller
2nd RBLR flight begins around: June 27 (H)/July 1 (G).

San Jose Scale
1st generation SJS crawlers appear: June 15 (H)/June 20 (G).

Spotted Tentiform Leafminer
2nd STLM flight begins around: June 13 (H)/June 18 (G).

[Section: INSECTS]

THE WORSTED THAT COULD HAPPEN
(Art Agnello, Entomology, Geneva; ama4@cornell.edu)
[Box Text: QUITE A YARN]

This is the point of the season at which we normally begin to hear reports of the first infestations of woolly apple aphid (WAA) in problem sites in western NY. In
addition to apple, its hosts include American elm, hawthorn, and mountain ash. It overwinters as an egg in bark cracks and crevices, or as a nymph on roots underground and in various protected locations on trees. WAA is attracted to the base of root suckers and around pruning wounds and cankers on limbs and trunks, and colonizes both above-ground parts of the apple tree as well as the roots. In the spring, the nymphs, which are reddish-brown with a bluish-white waxy covering, crawl up from the roots to initiate aerial colonies. These initially build up on the inside of the canopy on sites such as wounds or pruning scars, and later become numerous in the outer portion of the tree canopy, usually during late July to early August.

The aerial colonies occur most frequently on succulent tissue such as the current season's growth, water sprouts, unhealed pruning wounds, or cankers. The main injury to young and mature trees is stunting due to the formation of root or twig galls; mature trees are usually not damaged. Heavy infestations cause honeydew and sooty mold on the fruit and galls on the plant parts, which interferes with harvest operations because red sticky residues from crushed WAA colonies can accumulate on pickers' hands and clothing.
During late June, water sprouts, pruning wounds, and scars on the inside of the tree canopy should be examined for WAA nymphs. During mid-July, new growth around the outside of the canopy should be examined for WAA colonies. No economic threshold has been determined for treatment of WAA, but they are difficult to control, so the occurrence of any colonies should prompt the consideration of some remedial action.

WAA is frequently parasitized by *Aphelinus mali*, a tiny wasp that is also native to North America. Parasitized aphids appear as black mummies in the colony. *A. mali* has been successfully introduced to many apple-growing areas of the world, and is providing adequate control of the WAA in several areas. It does not provide sufficient control in commercial orchards in our region because of its sensitivity to many commonly used insecticides; however, the wasp is thought to reduce WAA populations in abandoned orchards.

WAA is difficult to control with insecticides because of its waxy outer covering and tendency to form dense colonies that are impenetrable to sprays. Insecticide treatments are more effective the earlier they are
applied, since they are more capable of decreasing the population before it becomes widespread, and the insects' waxy covering is less extensive earlier in the season. WAA is resistant to the commonly used organophosphates, but other insecticides are effective against WAA, including Diazinon and Thionex, and some newer products such as Admire, Assail, Beleaf, or Movento may offer suppression (for Movento and Assail, addition of a non-ionic surfactant or horticultural mineral oil will improve activity). Good coverage to soak through the insects' woolly coverings is integral to ensuring maximum efficacy. Additionally, a Lorsban trunk application for borers made at this time will effectively control any crawlers that might be contacted by these sprays.

STINK BUG SURVEY CLOSING SOON

Got stink bugs? We need your help! We're surveying growers to assess the impact of BMSB on crops and gather information that will help us defeat this pest. Receive a free Guide to Stink Bugs* if you complete the 10-minute BMSB survey (https://cornell.qualtrics.com/SE/?SID=SV_5ssnjXLNhp6v1H). Your participation will help us to help you Stop BMSB! The survey will be available until June 30th.
The Outreach Team for "StopBMSB," a project focused on the biology, ecology, and management of the brown marmorated stink bug. For more info: StopBMSB.org
[*see it at https://pubs.ext.vt.edu/444/444-356/444-356_pdf.pdf]

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 2 p.m. Monday to:

Scaffolds Fruit Journal
Editors: A. Agnello, D. Kain
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>