COMING EVENTS

Current DD* accumulations
(Geneva 1/1-5/30): 692.4 360.9
(Geneva 1/1-5/30/2016): 675.3 369.2
(Geneva "Normal"): 699.2 397.2
(Geneva 1/1-6/5, predicted): 803.9 430.6
(Highland 1/1-5/30): 943.6 524.5

Upcoming Pest Events – Ranges (Normal +/- Std Dev):
American plum borer
 1st flight peak..........................601-967 329-585
Black cherry fruit fly 1st catch702-934 380-576
Codling moth 1st flight peak.......558-971 306-574
Lesser appleworm
 1st flight peak..........................364-775 183-444
Obliquebanded leafroller
 pupae present..............................601-821 328-482
Peachtree borer 1st catch.........801-1326 463-819
Redbanded leafroller
 1st flight subsiding601-892 338-556
San Jose scale 1st flight peak 557-737 297-414
Spotted tentiform leafminer
 1st flight subsiding 676-947 376-575
White apple leafhopper
 1st brood adults present 679-1041 380-694
[all DDs Baskerville-Emin, B.E.]

PEST FOCUS
Highland: Obliquebanded Leafroller 1st trap catch
today, 5/30.

MODEL BUILDING
Insect model predictions for Highland[H]/Geneva[G]

Plum curculio emergence complete at 308 DD50 from McIntosh petal fall (currently @ 228[H] / 138[G]).

Oriental fruit moth spray window (55% hatch) in apples at 350-375 DD45 after biofix (currently @ 634[H] / 470[G] / 344[Sodus] / 372[Albion]).

Codling moth spray window for ovicides at 150 DD50 and for larvicides at 250-360 DD50 after biofix (currently at @ 210[H] / 113[G]).

Obliquebanded Leafroller larval emergence @ 350 DD43 from biofix (currently @ 0[H]).

San Jose Scale crawler emergence @ 310 DD50 after 1st flight (currently @ 80[H]) or ~500 DD from March 1 (currently @ 498[H] / 404[G]).

TRAP CATCHES (Number/trap)
Geneva

5/19 5/22 5/26 5/30
<table>
<thead>
<tr>
<th>Insect</th>
<th>5/8</th>
<th>5/15</th>
<th>5/22</th>
<th>5/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbanded Leafroller</td>
<td>54.0</td>
<td>30.5</td>
<td>22.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Spotted Tent. Leafminer</td>
<td>16.0</td>
<td>10.0</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>9.5</td>
<td>9.5</td>
<td>9.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>64.5</td>
<td>29.0</td>
<td>5.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Obliquebanded Leafroller</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5*</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>0.0</td>
<td>4.0*</td>
<td>49.5</td>
<td>48.5</td>
</tr>
<tr>
<td>San Jose Scale</td>
<td>0.0</td>
<td>0.0</td>
<td>30.5*</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* 1st catch
Roundheaded Appletree Borer
RAB egglaying begins: May 31 (H)/June 7 (G). Peak egglaying period roughly: June 21-July 5 (H)/June 27-July 11. First RAB eggs hatch roughly: June 15 (H)/June 222 (G).

Dogwood Borer
First DWB egg hatch roughly: June 16 (H)/June 24 (G).

Codling Moth
Codling moth development as of May 30:
1st generation adult emergence at 40% (H)/19% (G) and 1st generation egg hatch at 0%.
1st generation 3% egg hatch expected: June 2 (H)/June 10 (G).

Obliquebanded Leafroller
1st generation OBLR flight, first trap catch expected: June 1 (H)/June 9 (G).

San Jose Scale
1st generation SJS crawlers appear: June 12 (H)/June 19 (G).

Spotted Tentiform Leafminer
2nd STLM flight begins around: June 10 (H)/June 17 (G).
We're entering the prime window for control of our most serious fruit-feeding lepidopteran pests – oriental fruit moth, codling moth, and obliquebanded leafroller. Oriental fruit moth adults are finishing up the first flight of the season, and the first flush of OFM larvae, which aren't a major threat to newly set apples and would have been best handled during the petal fall period, are mostly on their way to pupating. In contrast, codling moth adults have been flying for 1-2 weeks around the state, and the eggs they have laid will soon be in the early stages of hatching, which makes this week a very opportune time to prepare for the first control sprays against the early-instar larvae. Fortunately, we have a good selection of effective materials to use against them.

The best products for controlling both CM and OFM are those in IRAC Group 28 (containing a diamide; i.e., Altacor, Belt, Exirel, Voliam Flexi or Voliam Xpress/Besiege) or IRAC Group 5 (mainly spinetorom, Delegate; spinosad,
formulated as Entrust, is an organically approved option). Two applications from either of these groups on a 10–14-day interval would be recommended starting at 220 DD50 from biofix; we're already approaching this point in Highland. Products with insect growth regulator activity, such as Rimon, Intrepid or Esteem, would be suitable options this week. Other products with activity against internal leps include the neonic Assail and, in orchards where resistance has not developed to the newer pyrethroids, also Baythroid, Danitol, Endigo, and Leverage. Most older broad-spectrum materials like Imidan, Lannate, and the older pyrethroids, which were formerly more effective, are generally not good choices because of insecticide resistance issues.

Now would also be an appropriate time for an application of a granulosis virus product such as Cyd-X, Madex or Carpovirusine, in addition to the larvicides discussed above. These are biological insecticides, which must be ingested to initiate the infection, after which the virus replicates inside the larva until it is killed; this releases more virus particles into the orchard. This is a very useful approach for long-term population reduction, particularly when used in at least 2 applications per generation. Madex contains an isolate that is also effective against OFM.
OBLR larval emergence is still on the order of 15 days away in Geneva, but should be starting in 10-14 days in the Hudson Valley. Anytime from first hatch until about 25% hatch (360-450 DD43 after biofix) would be an appropriate time for a larvicidal material, and the IRAC Group 5 and 28 products recommended against CM and OFM will also be very effective against OBLR. Others with slightly less efficacy, but useful in lower pressure situations, include B.t. products (Agree, Biobit, Deliver, Dipel, Javelin, etc.), Proclaim, and possibly Intrepid. In orchards where OBLR pressure is unpredictable, we recommend waiting until approximately 600 DD43 and sampling for infested terminals using a 3% threshold (see p. 72 in the Recommends).

More details on the nuts and bolts theory and practice of CM and OFM management can be found in the fact sheet by Breth, Agnello and Tee at:
http://www.fruit.cornell.edu/lof/ipm/pdfs/codling_moth.pdf

[Section: DISEASES]

HUMAN-AIDED DISSEMINATION OF FIRE BLIGHT
(Dave Rosenberger, Plant Pathology, Highland; dar22@cornell.edu)
While most plant pathogens have evolved natural mechanisms for dissemination, human activities sometimes contribute to unnatural long-distance spread of certain pathogens. In 2009, a late blight pandemic on tomatoes in eastern United States was traced, at least in part, to dissemination of infected transplants through large chains of retail garden stores that are often known as big box stores (Fry et al. 2012).

This year, several observers have found potted ornamental pear and crab apple trees with fire blight being held for sale at big-box garden stores in both North Carolina and New York. Affected trees show typical blossom blight and terminal shoot dieback symptoms associated with fire blight (Figs. 1 and 2). It is not clear whether all of the infected trees are originating from the same supplier or even if all of the infections originated in the nursery that produced the trees. Some trees may have become infected in local retail stores if a few trees that were shipped to each location had carry-over blight cankers that produced inoculum for dissemination to other trees that may have blossomed after they were shipped. Nursery stock held for sale at these garden centers are located
outdoors, where rain and insects could have contributed to disease spread within the retail centers.

It is extremely unlikely that the small amounts of fire blight noted on trees in retail outlets will have any significant impact on commercial apple and pear orchards because, unlike late blight of tomatoes, which continues to spread throughout summer, the period of peak susceptibility to fire blight is limited to the relatively short period when trees are in bloom in spring. Nevertheless, the observation that fire blight is being transported via human transport systems to unwitting homeowners across broad geographic areas should serve as a reminder that fire blight inoculum can sometimes turn up rather unexpectedly in regions that may not have experienced fire blight in the recent past. Pinpointing sources of inoculum can be very difficult in regions where orchards are intermingled with residential areas containing many small trees that can harbor fire blight.

Literature cited:

[Section: GENERAL INFO]

EVENT ANNOUNCEMENTS

What's New in Insect Pest Management for Organic Apples – hosted by NOFA-NY

Presenters: Cornell researchers Arthur Agnello, Elson Shields, Peter Jentsch, Dept. of Entomology. Participants will learn about established and newly-developed organic orchard management tools and techniques for plum curculio (PC), codling moth (CM) and oriental fruit moth (OFM). Trials utilizing entomopathogenic nematodes for biological control of PC show promise. Participants will learn how the nematodes can be reared on the farm, applied, and their effectiveness evaluated. Mating disruption has been available for CM and OFM control for a number of years; presenters will review some of the most promising methods of implementing this tactic, such as hand-applied dispensers and automated misting devices. Finally, this farm is using pest-specific insect
viruses against these moth pests, so a review of the principles and preliminary results of pest-specific viruses in a pest control program will be included. This event is produced by NOFA-NY with support from the following: The New York Farm Viability Institute, NYS Specialty Crops Block Grant Program, and Toward Sustainability Foundation.

• June 13, 1:00 pm-4:00 pm, Bittner-Singer Orchards at Marjim Manor, 7171 East Lake Road (Route 18), Appleton, NY 14008
• June 15, 1:00-4:00 pm, Clarke's Prospect Farm, 4 Deyo Dr., Gardiner, NY 12548

Pre-registration online is strongly encouraged, but walk-ins are welcome; cost is $15/individual, $25/two or more people from same farm. To register, visit http://bit.ly/2qkSwsJ or call the NOFA-NY office at (585) 271-1979, x512.

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 2 p.m. Monday to:

Scaffolds Fruit Journal
Editor: A. Agnello
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341
FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>