SCAFFOLDS Fruit Journal, Geneva, NY
Volume 26, No. 7
Update on Pest Management and Crop Development
May 8, 2017

COMING EVENTS

Current DD* accumulations
(Geneva 1/1-5/8): 389.3 184.1
(Geneva 1/1-5/8/2016): 317.0 132.1
(Geneva "Normal"): 350.4 175.5
(Geneva 1/1-5/15, predicted): 449.7 211.6
(Highland 1/1-5/8): 592.7 306.9

Upcoming Pest Events – Ranges (Normal +/- Std Dev):
American plum borer 1st catch ..392-521 196-285
Codling moth 1st catch396-566 200-307
European red mite
 egg hatch complete....................368-470 182-280
Green fruitworm flight subsides .267-465 124-249
Lesser appleworm 1st catch276-564 129-305
Lesser appleworm
 1st flight peak.........................364-775 183-444
Mullein plant bugs 1st hatch331-443 163-229
Oriental fruit moth
 1st flight peak........................329-534 165-285
Redbanded leafroller
 1st flight peak.......................... 228-378 104-198
San Jose scale 1st catch 438-614 220-339
Spotted tentiform leafminer
 sapfeeding mines present 343-601 165-317
White apple leafhopper
 nymphs on apple.................... 302-560 146-308
McIntosh petal fall 445-523 227-285
[all DDs Baskerville-Emin, B.E.]

Phenologies

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>5/15, Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple (McIntosh):</td>
<td>50% petal fall</td>
<td>petal fall</td>
</tr>
<tr>
<td>Apple (Empire):</td>
<td>bloom</td>
<td>petal fall</td>
</tr>
<tr>
<td>Apple (Red Del.):</td>
<td>bloom</td>
<td>bloom</td>
</tr>
<tr>
<td>Apple (Idared):</td>
<td>bloom</td>
<td>bloom</td>
</tr>
<tr>
<td>Pear (Bartlett):</td>
<td>80% petal fall</td>
<td>petal fall</td>
</tr>
<tr>
<td>Pear (Bosc):</td>
<td>80% petal fall</td>
<td>petal fall</td>
</tr>
<tr>
<td>Tart Cherry:</td>
<td>50% petal fall</td>
<td>fruit set</td>
</tr>
<tr>
<td>Sweet Cherry:</td>
<td>petal fall</td>
<td>fruit set</td>
</tr>
<tr>
<td>Peach:</td>
<td>petal fall</td>
<td>petal fall/shuck split</td>
</tr>
<tr>
<td>Plum:</td>
<td>petal fall</td>
<td>fruit set</td>
</tr>
</tbody>
</table>

Highland:
Apple (McIntosh,
Empire, Ginger Gold, Spur Red Delicious): petal fall/fruit set
Pear (all): petal fall/fruit set
Peaches, Cherries, Plums: petal fall

PEST FOCUS
Geneva: BMSB 1st catch (Webster/Monroe Co.), May 3.
Black stem borer 1st catch (Wayne Co.), May 3.
Highland: Foliar damage noted from Rosy Apple Aphid (curled leaves), Obliquebanded Leafroller (feeding damage), Gypsy Moth (feeding damage).

<table>
<thead>
<tr>
<th></th>
<th>4/27</th>
<th>5/1</th>
<th>5/4</th>
<th>5/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Fruitworm</td>
<td>0.0</td>
<td>5.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>35.5</td>
<td>105.5</td>
<td>9.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Spotted Tent. Leafminer</td>
<td>25.5</td>
<td>89.5</td>
<td>10.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>13.5</td>
<td>30.5</td>
<td>66.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Insect</td>
<td>4/17</td>
<td>4/24</td>
<td>5/1</td>
<td>5/8</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Green Fruitworm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Redbanded Leafroller</td>
<td>98.0</td>
<td>103.5</td>
<td>109.5</td>
<td>54.0</td>
</tr>
<tr>
<td>Spotted Tent. Leafminer</td>
<td>0.0</td>
<td>75.5*</td>
<td>154.5</td>
<td>16.0</td>
</tr>
<tr>
<td>Oriental Fruit Moth</td>
<td>2.0*</td>
<td>0.5</td>
<td>47.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Lesser Appleworm</td>
<td>5.0*</td>
<td>8.5</td>
<td>93.5</td>
<td>64.5</td>
</tr>
<tr>
<td>Obliquebanded Leafroller</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* 1st catch
[H = Highland; G = Geneva]:

Roundheaded Appletree Borer
RAB egglaying begins: June 4 (H)/June 8 (G). Peak egglaying period roughly: June 24-July 7 (H)/June 28-July 12. First RAB eggs hatch roughly: June 19 (H)/June 23 (G).

Dogwood Borer
First DWB egg hatch roughly: June 18 (H)/June 23 (G).

Codling Moth
1st generation, first sustained trap catch biofix date: May 9 (H).
Codling moth development as of May 8:
1st generation adult emergence at 0% and 1st generation egg hatch at 0%
1st generation 3% egg hatch expected: June 5 (H)/June 9 (G).

Lesser Appleworm
1st LAW trap catch: May 2 (H)/May 11 (G); peak trap catch: May 16 (H)/May 22.

Mullein Plant Bug
Expected 50% egg hatch date: May 5 (H)/May 14 (G), which is 9 days before rough estimate of Red Delicious petal fall date.
Obliquebanded Leafroller
1st generation OBLR flight, first trap catch expected: June 4 (H)/June 9 (G).

Oriental Fruit Moth
1st generation 55% egg hatch and first treatment date, if needed: May 24 (H)/May 30 (G).

San Jose Scale
First adult SJS caught on trap: May 13 (H)/May 20 (G).
1st generation SJS crawlers appear: June 14 (H)/June 19 (G).

Spotted Tentiform Leafminer
1st generation sapfeeding mines start showing: May 11 (H)/May 21 (G)/
Optimum sample date is around May 16 (H)/May 22 (G), when a larger portion of the mines are visible.

White Apple Leafhopper
1st generation WALH found on apple foliage: May 3 (H)/May 12 (G).

[Section: INSECTS]

GLOVE UP
(Art Agnello, Entomology, Geneva; ama4@cornell.edu)

[Box text: UMBRELLA POLICY]
[Editor's note: This article is nearly identical to what we printed last year, even though this season doesn't appear to be at all similar to 2016 -- which goes to show how an extreme changeover in last year's summer weather patterns can affect the short-term memory. Or, alternatively, don't be surprised if the current weather trends evaporate once we reach June - AMA]

Few things in life are well synchronized, least of all tree development during the spring in New York, and this year's yo-yo temperature trend has intensified the normal disparity shown among the state's different growing regions. The result is that we have trees ranging from just entering bloom (or maybe thinking about it) to setting fruits. This period is always tough to nail for timeliness of advice, so we'll be conservative and assume that everyone who isn't actually scheduling their petal fall sprays will at least want to give them some advance planning, since the one thing we can rely on is that the "old faithful" insect pests we always look out for at petal fall will continue their progress towards the newly formed fruits. To that end, this overview will help take your mind off the current fluxes in the weather and make preparations for when things heat up again.

Plum Curculio
Adults move into orchards from overwintering sites in hedgerows or the edges of woods and adults are active when temperatures exceed 60°F, something that has occurred recently and will recur later this week. Adult females oviposit in fruit during both day and night but feed mostly at night. Depending on temperature, overwintering adults remain active for 2–6 weeks after petal fall. Because adults are not highly mobile, orchards near overwintering sites, woodlands, and hedgerows are most susceptible to attack. Fruit damage is usually most common in border rows next to sites where adults overwinter. Although initial post-bloom sprays for plum curculio control should begin at petal fall, growers are often unsure how many additional sprays will be necessary to maintain protective chemical residues to prevent subsequent damage throughout the PC oviposition cycle, which varies according to temperatures and weather patterns after petal fall.

Following from the fact that PC activity and oviposition are largely determined by temperature, we use an oviposition model to estimate when control sprays after petal fall are no longer necessary to protect fruit from PC damage. This model is based on the assumption that residues from sprays applied after petal fall need to be maintained on fruit and foliage only until PC adults stop immigrating into orchards, which happens to correspond to
the time when about 40% of the oviposition cycle is complete. This is predicted by the model to occur at 308 DD (base 50°F) after petal fall of McIntosh. Most probably, this strategy works because, after 40% of PC oviposition is complete, adults usually do not move into the orchard from outside sources, or within orchards from tree to tree. Therefore, by this time, adults residing in treated trees have already been killed by insecticide residues and are unable to complete the remainder of their normal oviposition cycle.

In order to use this strategy: (1) Treat the entire orchard at petal fall with a broad spectrum insecticide. (2) Start calculating the accumulation of DD after petal fall of Macs (base 50°F); this is easily done from the NEWA Apple Insect Models page (http://newa.cornell.edu/index.php?page=apple-insects) by entering the petal fall date for your area. (3) No additional sprays are necessary whenever the date of accumulation of 308 DD falls within 10–14 days after a previous spray. We'll attempt to give local updates for the major fruit areas as the post-PF period progresses. In cherries and other stone fruits that are already at shuck fall, sprays should start (or should have started, as appropriate) at the first opportunity. Recall that, in addition to the industry standard broad-spectrum materials such as Imidan, some additional options may be considered: Lorsban 75WG can
still be used at petal fall in tart cherries, but obviously is no longer labeled for this use in apples; also, Avaunt and Actara are effective for plum curculio in apples and pears, and Avaunt is also labeled in stone fruit as another PC option. Delegate and Altacor both have some activity on PC, but should not be considered as the first choices in high-pressure blocks. Another option would be Exirel, a 2nd-generation diamide with better efficacy against this pest.

European Apple Sawfly

This primitive bee and wasp relative shows a preference for early or long-blooming varieties with a heavy set of fruit. This insect is generally more of a pest in eastern N.Y., although it has been gradually making its presence known in the more western sites, and now frequently reaches as far as Wayne Co. (and beyond). The adult sawfly emerges about the time apple trees come into bloom and lays eggs in the apple blossoms, which means they can be found now, in between temperature dives into the 30s. Young larvae begin feeding just below the skin of the fruits, creating a spiral path usually around the calyx end. This early larval feeding will persist as a scar that is very visible at harvest, and which some find to be almost decorative, although fruit marketability is obviously affected. Following this feeding behavior, the larva usually begins tunneling toward the seed cavity of the fruit or an adjacent fruit, which usually
causes it to abort. As the larva feeds internally, it enlarges its exit hole, which is made highly conspicuous by a mass of wet, reddish-brown frass. The frass may drip onto adjacent fruits and leaves, giving them an unsightly appearance. The secondary feeding activity of a single sawfly larva can injure all the fruit in a cluster, causing stress on that fruit to abort during the traditional "June drop" period.

Certain insecticides that control this pest also adversely affect bees, which can pose a problem at petal fall because certain apple varieties lose their petals before others. In blocks of trees where petal fall has occurred on one variety but not the others, the variety that has lost its petals is likely to sustain some curculio or sawfly injury until an insecticide is applied. Some insecticides with activity against both plum curculio and sawfly -- like Avaunt and Actara -- may have a slight advantage over the conventional OP Imidan in this case. Assail represents another option for controlling sawfly; it's not very active against plum curculio, but will do a good job against rosy apple aphid and spotted tentiform leafminer, as well as sawfly, at this timing. Altacor and Exirel are both rated high in their control efficacy against sawfly. To minimize the hazard to honey bees, make sure any pesticide is applied only when no bees are actively foraging on blooming weeds (evening is better than early morning).
Obliquebanded Leafroller

Larvae overwintering as 1st- or 2nd-stage caterpillars may have had the ability to grow to a noticeable size, although we haven't actually seen any up to this point, so most are likely still relatively small. While you're assessing bud viability, it would be prudent to have a quick look for later-stage larvae in problem blocks to determine whether a treatment against the overwintered brood should be included in your petal fall plans. Scout the blossom clusters or foliar terminals for larvae feeding within both the flowers and rolled leaves; a 3% infestation rate could justify an application to minimize overwintered fruit damage and help reduce summer populations.

Among the selective insecticides available, Intrepid and Rimon have been successful at this timing, and B.t. products, which can be used while blossoms are still present, include Agree, Biobit, Deliver, Dipel, and Javelin. More recently, Proclaim has been shown to be very effective at the petal fall timing, and also provides activity against early season mite populations. Delegate, Altacor, Exirel and Belt all offer very good efficacy against not only OBLR, but also the internal leps. Pyrethroids such as Asana, Baythroid, Danitol, Warrior, Proaxis or Leverage may also be effective, depending on past use history, but be aware of
their broad-spectrum effects, which can work both for and against you, according to your approach towards conserving beneficial mites and insects.

Oriental Fruit Moth

Biofix is spread out across NY again this year, ranging from April 17 in the Hudson Valley to April 24 in Geneva and May 3 in Wayne Co.; the cooler temperatures over the past week will likely continue the indistinct pattern of emergence in most sites. Use the NEWA Apple Insect Models page to chart current degree day (base 45°F) progress towards the recommended totals of 170 (in peaches) and 350 (in apples) as the timing at which to apply a protective spray. To maximize the efficacy of 1st brood control, peach growers should use one of the suggested options from the Recommends starting at petal fall, backed up 10–14 days later. In apples, in addition to Delegate, Altacor, Exirel and Belt, a number of the petal fall selection of insecticides will do an acceptable job of controlling this generation, including Imidan, the pyrethroids, Intrepid, Assail, and Avaunt.

European Red Mite

We haven't actually received any reports of problematic red mite numbers showing up just yet. However, because the prebloom conditions were so unfavorable for
applications of oil or even ovicides, it would be prudent to have a look at your rapidly expanding terminal shoots for evidence of hungry motile mites, and consider an early "summer" application of a suitable material to head off problems before they get out ahead of you; it's suitable to use the regular June 2.5/leaf threshold (p. 74 in the Recommends), even though we're over 2 weeks away from June 1. There are numerous choices of products available at this time, including the traditionally considered ovicides such as Apollo, Savey and Onager (if not already used this season), as well as Agri-Mek, which can still easily get into the tender leaf tissue to do its work, plus a host of moderate- and quicker-acting maintenance/rescue materials such as Zeal, Kanemite, Nexter, Portal, Acramite, Envidor, and Nealta. Additionally, if you're planning to apply Proclaim for OBLR, you'll get some miticidal activity too. Be aware of seasonal use limits and IRAC rotational considerations with anything you use now.

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 2 p.m. Monday to:

Scaffolds Fruit Journal
Editor: A. Agnello
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>