SCAFFOLDS Fruit Journal, Geneva, NY

Volume 26, No. 15

Update on Pest Management and Crop Development

July 3, 2017

COMING EVENTS

<table>
<thead>
<tr>
<th>Event Description</th>
<th>43°F</th>
<th>50°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current DD* accumulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Geneva 1/1-7/3):</td>
<td>1462.4</td>
<td>844.1</td>
</tr>
<tr>
<td>(Geneva 1/1-7/3/2016):</td>
<td>1445.8</td>
<td>906.3</td>
</tr>
<tr>
<td>(Geneva "Normal"):</td>
<td>1494.3</td>
<td>950.8</td>
</tr>
<tr>
<td>(Geneva 1/1-7/10, predicted):</td>
<td>1641.4</td>
<td>984.1</td>
</tr>
<tr>
<td>(Highland 1/1-7/3):</td>
<td>1857.0</td>
<td>1190.0</td>
</tr>
</tbody>
</table>

Upcoming Pest Events – Ranges (Normal +/- Std Dev):

Apple maggot 1st catch

<table>
<thead>
<tr>
<th>Event Description</th>
<th>1225-1661</th>
<th>774-1072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple maggot</td>
<td>1605-2157</td>
<td>1144-1544</td>
</tr>
<tr>
<td>1st oviposition punctures</td>
<td>1264-1821</td>
<td>801-1200</td>
</tr>
<tr>
<td>Codling moth 1st flight subsides</td>
<td>1775-2234</td>
<td>1028-1499</td>
</tr>
<tr>
<td>Codling moth 2nd flight starts</td>
<td>1505-1731</td>
<td>931-1143</td>
</tr>
<tr>
<td>Comstock mealybug</td>
<td>1434-1864</td>
<td>898-1233</td>
</tr>
<tr>
<td>1st flight peak</td>
<td>1429-2108</td>
<td>924-1405</td>
</tr>
<tr>
<td>Dogwood borer flight peak</td>
<td>1429-2108</td>
<td>924-1405</td>
</tr>
<tr>
<td>Lesser appleworm</td>
<td>1429-2108</td>
<td>924-1405</td>
</tr>
<tr>
<td>2nd flight starts</td>
<td>1429-2108</td>
<td>924-1405</td>
</tr>
<tr>
<td>Obliquebanded leafroller</td>
<td>1429-2108</td>
<td>924-1405</td>
</tr>
</tbody>
</table>
1st flight subsides 1622-2041 1054-1375
Oriental fruit moth 2nd flight peak 1448-1954 924-1311
Pandemis leafroller flight subsides 1441-1692 901-1103
Redbanded leafroller 2nd flight starts 1209-1562 744-1016
San Jose scale 2nd flight starts 1629-1979 1058-1336
Spotted tentiform leafminer 2nd flight peak 1385-1786 869-1189
Spotted tent. leafminer 2nd gen tissue feeders 1378-2035 913-1182
*[all DDs Baskerville-Emin, B.E.]

MODEL BUILDING

Insect model predictions for Highland[H]/Geneva[G]
[Source: NEWA Apple Insect Models,

Obliquebanded Leafroller 50% egg hatch @ 630 DD43 from biofix; 90% egg hatch @ 810 DD43 (currently @ 869[H] / 550[G]).

TRAP CATCHES (Number/trap)
<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Redbanded Leafroller</th>
<th>Spotted Tent. Leafminer</th>
<th>Oriental Fruit Moth</th>
<th>Codling Moth</th>
<th>Lesser Peachtree Borer</th>
<th>Peachtree Borer</th>
<th>Dogwood Borer</th>
<th>Obliquebanded Leafroller</th>
<th>Apple Maggot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geneva</td>
<td>6/23</td>
<td>2.5</td>
<td>125.0</td>
<td>19.5</td>
<td>31.5</td>
<td>10.5</td>
<td>17.5</td>
<td>5.5</td>
<td>29.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6/26</td>
<td>2.5</td>
<td>107.0</td>
<td>47.5</td>
<td>9.5</td>
<td>14.0</td>
<td>15.0</td>
<td>12.0</td>
<td>16.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6/30</td>
<td>31.5</td>
<td>270.0</td>
<td>35.5</td>
<td>13.5</td>
<td>4.0</td>
<td>16.5</td>
<td>13.0</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>7/3</td>
<td>26.0</td>
<td>312.5</td>
<td>42.5</td>
<td>2.0</td>
<td>5.0</td>
<td>24.0</td>
<td>2.0</td>
<td>7.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Redbanded Leafroller</th>
<th>Spotted Tent. Leafminer</th>
<th>Oriental Fruit Moth</th>
<th>Codling Moth</th>
<th>Lesser Appleworm</th>
<th>Obliquebanded Leafroller</th>
<th>Codling Moth</th>
<th>San Jose Scale</th>
<th>Sparganothis Fruitworm</th>
<th>Variegated Leafroller</th>
<th>Tufted Apple Bud Moth</th>
<th>Dogwood Borer</th>
<th>Apple Maggot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highland (Peter Jentsch)</td>
<td>6/12</td>
<td>0.0</td>
<td>40.5*</td>
<td>3.5</td>
<td>11.2</td>
<td>13.0</td>
<td>13.0</td>
<td>27.0</td>
<td>-</td>
<td>2.0</td>
<td>6.0</td>
<td>12.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6/19</td>
<td>2.0</td>
<td>173.5</td>
<td>2.0</td>
<td>2.5</td>
<td>20.0</td>
<td>20.0</td>
<td>36.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>13.0</td>
<td>1.0*</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>6/26</td>
<td>14.5</td>
<td>168.0</td>
<td>2.0</td>
<td>6.0</td>
<td>18.5</td>
<td>18.5</td>
<td>29.5</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>20.0</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>7/3</td>
<td>16.0</td>
<td>177.0</td>
<td>1.5</td>
<td>20.0</td>
<td>9.5</td>
<td>9.5</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>7.0</td>
<td>4.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Note: * indicates data from a different source or method.
* 1st catch
Roundheaded Appletree Borer
RAB peak hatch roughly: July 4-July 22 (H)/July 10-July 30.

Dogwood Borer
Peak DWB egg hatch roughly: July 21 (H)/July 29 (G).

Codling Moth
Codling moth development as of July 3:
2nd generation adult emergence at 0% (H)/0% (G) and
1st generation egg hatch at 97% (H)/85% (G).

Lesser Appleworm
2nd LAW flight begins around: July 4 (H)/July 13 (G).

Obliquebanded Leafroller
Optimum sample date for late instar summer
generation OBLR larvae: July 3 (G).

Oriental Fruit Moth
2nd generation first treatment date, if needed: July 6
(G).
2nd generation second treatment date, if needed: July
9 (H)/July 18 (G).

Redbanded Leafroller
2nd RBLR peak catch and approximate start of egg
hatch: July 4 (H)/July 13 (G).
Spotted Tentiform Leafminer

Optimum first sample date for 2nd generation STLM sapfeeding mines is: July 4 (H)/July 13 (G).

[Section: INSECTS]

PEST PYROTECHNICS
(Art Agnello, Entomology, Geneva; ama4@cornell.edu)

[Box Text: CHECK THAT FUSE]

The summer seems to be settling into a hotter and (hopefully?) drier pattern, which will tend to benefit some insect pests more than others. The following is a brief rundown of some items to keep near the top of your "scramble" list, just to help prevent anything from getting out of hand.

Internal Leps

We are generally in between the first and second flights for both codling moth and oriental fruit moth. The first brood CM flight has tapered off and we're nearly through the hatch period, although we should remain attentive for any signs of a renewed surge in trap numbers during this time (the vaunted "B peak" that can vex early season management efforts), so most sites with traditionally heavy pressure from these pests should still be subject to first
generation larval control needs. If you aren't actually inspecting the young fruitlets for signs of fresh infestation, it would be prudent at least to consider the need for a(nother) protective spray if weekly adult numbers surpass 5 per trap; Delegate, Altacor, Belt, and Exirel are the top-ranked options. Additionally, we'll be looking for increasing captures of the 2nd flight of oriental fruit moth (time management sprays for when catches exceed 10/trap/week), and should note a definite uptick in trap numbers within the next 10–14 days, especially if the temperatures maintain their typical July values.

Obliquebanded Leafroller

According to our developmental models, the first summer brood hatch should be anywhere from 50–100% complete around the state this week. Orchards with historically high OBLR pressure should normally receive an application of a suitable material during the first part of July, so this week would be the latest possible time for such an application against the larvae of this brood if they haven't been attended to. Delegate, Altacor, Belt, Exirel, Rimon and Proclaim are appropriate choices, particularly in cases where the larvae are a bit larger, and a B.t. product such as Dipel, or else the IGR Intrepid are also options, but these tend to be more effective when applied against the earlier stages. If you are applying any of the diamides (Belt,
Altacor, Exirel, plus the various premixes containing the same a.i.s) or Delegate to control codling moth and oriental fruit moth, they will also be very effective against OBLR at this time. Regardless, we have found that this specific spray is the most critical for preventing fruit-feeding damage at harvest, so put this at the top of your list of priorities if OBLR has distressed you in the past.

Apple Maggot

Adults have not made their first appearance in Geneva or Highland yet, but should begin showing up in traditional high-pressure sites around the state soon. Stings and larval tunneling would first be detected in early and favored varieties such as Ginger Gold and Honeycrisp, particularly in the Hudson Valley. If you aren't monitoring in specific orchards and haven't yet made preparations for a protective spray against AM (and aren't using Delegate or Altacor for OBLR, both of which have some activity on AM), prudence would suggest attention to this pest. Hanging a few volatile-baited sphere traps on the edge of susceptible plantings can provide valuable insight on when (and whether) immigrating flies are posing a threat. Growers on a Delegate or Altacor program for leafrollers/internal leps should get some protection against moderate AM pressure. For those not using Imidan in their cover sprays, Assail will
provide excellent control of apple maggot as well as internal leps.

Woolly Apple Aphid

Individual nymphs should have started to become noticeable as they make their way up into the canopies of infested trees, and we have been seeing substantial aerial colonies in the Geneva research plantings. This would be a prudent time to begin a preventive spray program for this pest in blocks with historically high pressure. Quoting from the May 31 issue's overview of treatment options: 'WAA is resistant to the commonly used organophosphates, but other insecticides are effective against WAA, including Diazinon and Movento, and some additional products such as Admire, Assail, or Beleaf may offer suppression. For Movento and Assail, addition of a non-ionic surfactant (e.g., LI-700 or Regulaid) or horticultural mineral oil will improve activity. Good coverage to soak through the insects' woolly coverings is integral to ensuring maximum efficacy. Additionally, a Lorsban trunk application for borers made at this time will effectively control any crawlers that might be contacted by these sprays.'

European Red Mite

Our recent wet conditions have not been favorable for mid-season buildup of mite populations, but if we do get a
turnaround in the heat (more) and rain (less) trends, it would be advisable to inspect the foliage in traditional hot spots plus sensitive varieties like Delicious, Braeburn and Gala, to be sure they don't blow up with the warm temperatures. During July, we recommend a 5 per leaf threshold of motile stages, and you can use the appropriate presence-absence sampling chart on p. 75 of the Recommends.

Spotted Wing Drosophila

First captures of female SWD have been recorded in various parts of the state already this season [Onondaga Co. (June 14), Orleans Co. (June 15), Wayne and Niagara Co. (June 21), Ulster and Cayuga Co. (June 26), Suffolk and Steuben Co. (June 27)], with sustained catches now reported in Albany, Rensselaer, Saratoga, Schuyler, and Washington Counties. Although berry fruit crops are considered to be most at risk for SWD infestation, cherries are also potential targets, so growers with either sweet or tart cherries that are not in the process of being harvested soon may want to consider using a protective spray to get them through the final days of maturation in sound shape. Labeled products such as Imidan (tarts only), Asana, Mustang Maxx, Lambda-Cy, Danitol, and Exirel, Entrust, (plus Delegate – suppression only) are potential options.
Asana, Mustang Maxx, Entrust, and Lambda-Cy are 2(ee) labels; users must have a copy in their possession at time of application.

Brown Marmorated Stink Bug
Peter Jentsch reports that, to date, they have seen low brown marmorated stink bug (BMSB) adult trap captures that are well below threshold for management in the Hudson Valley. However, scouting for the insect in trees has revealed BMSB eggs and newly hatched nymphs on apple foliage in Ulster County this week (Nic Ellis, Apple Leaf). In tree fruit blocks where nymphs are found, orchard management for the pest should be initiated. One of the most effective tools for management of BMSB is the active ingredient bifenthrin, in a number of formulations (see Chem News for an update on the Section 18 for Brigade and Bifenture). Other products showing efficacy against BMSB include Actara, Danitol, Endigo, Lannate, and Voliam Xpress/Besiege.

[Section: CHEM NEWS]

BIFENTHRIN SECTION 18 APPROVED FOR BMSB
The US Environmental Protection Agency has granted New York State a FIFRA Section 18 Specific
Exemption for the use of Bifenture 10DF Insecticide/Miticide (EPA Reg. No. 70506-227), Bifenture EC Agricultural Insecticide (EPA Reg. No. 70506-57), and Brigade WSB (EPA Reg. No. 279-3108) to control brown marmorated stink bug on apples, peaches, and nectarines in Columbia, Dutchess, Monroe, Orange, Orleans, Ulster, and Wayne Counties in New York State. Please note the following:
- The Section 18 labels restrict use to Columbia, Dutchess, Orange, and Ulster Counties, as well as (new this year) Monroe, Orleans, and Wayne Counties. Use in any other counties is prohibited.
- The exemption is valid through October 15, 2017.
- Bifenture 10DF, Bifenture EC, and Brigade WSB are all restricted-use pesticides.
- Aerial application is prohibited.

Users must have a copy of the appropriate Section 18 exemption in their possession at the time of use. Users must also follow all applicable directions, restrictions, and precautions on the primary product label. Copies of the approved Section 18 labels are available at the DEC’s NYSPAD product registration website.

[Section: ERRATA]
Please note the following corrections (underscored) to sections of last week's article on summer diseases by Srdjan Acimovic:

- In the lower Hudson Valley, if by any chance we had a drier spring and early summer (which we did not), the start of your SBFS spray program must not be delayed after the first week of July, because you need to spray starting no later than July 10 to prevent summer fruit rot infections.

- For prevention of white rot, good fungicides are: Pristine, Merivon, Topsin M, Flint, Gem, Sovran, _Luna Sensation_, Captan, Ferbam granuflo... Merivon, Flint, Pristine, _Luna Sensation_, Topsin and Ferbam are effective for SBFS as well.

- For preventing black and white rots, good choices are: Pristine, Merivon, _Luna Sensation_, Topsin M, Flint, Gem, Sovran, Captan, Ferbam granuflo. Topsin, Pristine, Captan, Merivon, and Sovran will also be effective for blossom end rot and bitter rot. Merivon, _Luna Sensation_, Flint, Pristine, Topsin and Ferbam are effective for SBFS as well.

- In different locations of the world, different _Colletotrichum_ species cause bitter rot. In Norway, it is reported that _Colletotrichum_ fungi usually overwinter in apple buds.
• (in the section on bitter rot:) "QoI fungicides such as Flint, Luna Sensation's trifloxystrobin component, Sovran, and the pyraclostrobin component in Pristine and Merivon are good choices. Always combine QoIs with at least mid-label rates of Captan."

This material is based upon work supported by Smith Lever funds from the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Scaffolds is published weekly from March to September by Cornell University -- NYS Agricultural Experiment Station (Geneva), and Ithaca -- with the assistance of Cornell Cooperative Extension. New York field reports welcomed. Send submissions by 2 p.m. Monday to:

Scaffolds Fruit Journal
Editor: A. Agnello
Dept. of Entomology, NYSAES
630 W. North St.
Geneva, NY 14456-1371
Phone: 315-787-2341 FAX: 315-787-2326
E-mail: ama4@cornell.edu
Online at
<http://www.scaffolds.entomology.cornell.edu/index.html>